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Perfect core-annular flows are two-phase flows, for example of oil and water, with the 
oil in a perfectly round core of constant radius and the water outside. Eccentric core 
flows can be perfect, but the centre of the core is displaced off the centre of the pipe. 
The flow is driven by a constant pressure gradient, and is unidirectional. This kind of 
flow configuration is a steady solution of the governing fluid dynamics equations in the 
cases when gravity is absent or the densities of the two fluids are matched. The position 
of the core is indeterminate so that there is a family of these eccentric core flow steady 
solutions. We study the linear stability of this family of flows using the finite element 
method to solve a group of PDEs. The large asymmetric eigenvalue problem generated 
by the finite element method is solved by an iterative Arnoldi’s method. We find that 
there is no linear selection mechanism; eccentric flow is stable when concentric flow is 
stable. The interface shape of the most unstable mode changes from varicose to sinuous 
as the eccentricity increases from zero. 

1. Introduction 
Motivated by the possibility of lubricating one fluid by another, two-phase pipeflow 

has been widely studied. Although two-phase flows are very complicated and the 
interface separating the phases is very irregular in general, there is a tendency for two 
fluids to arrange themselves so that the less-viscous phase is in the region of high shear. 
In a pipeflow the less-viscous fluid goes to the wall and the high-viscosity phase stays 
in the centre. Thus by introducing a small amount of lubricant one can greatly reduce 
the drag, as in the case of lubrication of heavy crudes by water. 

Experiments to explore this possibility have been carried out by Russell & Charles 
(1959), Charles, Goviers & Hodgson (1961) and Oliemens & Ooms (1986) among many 
others. A comprehensive review of results can be found in the monograph by Joseph 
& Renardy (1992). A more recent experimental study by Arney et al. (1993) identifies 
correlations for the friction factor and holdup ratios which fit all available data. 
Among all the realized flow patterns, core-annular flow has the greatest volume flux 
for a given pressure drop. The pressure drop along the pipe can be even smaller than 
the pressure drop in water alone at the same value of the volume flux. 

Various flow types such as oil bubbles and slugs in water, wavy core flows, perfect 
core flows, etc. can be studied by stability theory. While early flow models were usually 
overidealized, more and more realistic models have been studied recently with the help 
of high-speed computers (see Joseph & Renardy 1992). Examples of such works are 
Joseph, Renardy & Renardy (1983), Preziosi, Chen & Joseph (1989) and Hu & Joseph 
(1989). Their results are fairly inclusive for the case of perfect core-annular flow, in 
which the viscous core is perfectly concentric, with its centre coinciding with that of the 
pipe. Perfect coreannular flow is usually unstable owing to the following three kinds 
of instability : (a) capillary instability, (b) instability caused by interfacial friction and 
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(c) instability due to Reynolds stress. A small window of parameters was found in 
which perfect core-annular flow can be stable. 

In horizontal flows, when the densities of water and oil are different, the core must 
be off-centre. What usually happens in experiments is a flow configuration where the 
core is wavy and slightly off-centre, ‘flying’ in the water without touching the wall. The 
mechanism of the navigation of the core and the relation between the position of the 
core centre and the density difference are not yet well understood. We know that 
secondary flow must be present to counteract the buoyancy and a wavy interface is 
essential. Perfect eccentric core flows are exact solutions of the governing equations 
when the oil and water have the same density so that gravity cannot act. These flows 
form a family of steady solutions with the position of the core as a control parameter. 
Huang, Christodoulou & Joseph (1994) have calculated friction factor us. Reynolds 
number and holdup curves for perfect eccentric core flows in both laminar and 
turbulent cases. Eccentricity leads to only moderate increases of the friction. Since an 
eccentric core flow can be regarded as a disturbance to the perfect core-annular flow, 
we pose the question: in the case when the perfect core-annular flow is stable, is the 
slightly eccentric flow unstable? 

A convenient way to frame this problem is to identify the domain of parameters in 
which concentric core flow is stable and study the stability of the neighbouring 
eccentric flows. This kind of study is routine in principle but difficult to carry out in 
practice; to do it we extended the Arnoldi numerical algorithm to the complex domain. 
The result of our numerical study is of considerable interest since it shows that the non- 
uniqueness of a perfect core with regard to the centre of the core in the density matched 
case is not removed by stability to small disturbances. If concentric core flow is stable, 
so are all the neighbouring eccentric core flows. This implies that all previous analysis 
of linear stability of concentric core flows were only a part of the story because 
eccentric core flows are equally good candidates for linear stability analysis. Since the 
qualitative picture of the stability of concentric core flows is not changed by 
eccentricity when the flow is stable, we may hope for qualitative similarity even when 
concentric flow is unstable. Our numerical results do suggest a certain similarity 
between unstable concentric and eccentric flows. 

Turning next to a description of the numerical method we use to study stability, we 
note that the eccentric position of the core breaks the axisymmetry of the perfect 
core-annular flow. This lack of symmetry greatly increases the difficulty of the study 
of stability. Firstly, there is no closed form solution for the basic flow. Secondly, the 
usual decomposition in polar coordinates ( r ,O , z )  is no longer valid. A bipolar 
decomposition with normal z-modes can be imagined but is probably not practical. 
Therefore a group of PDEs has to be solved for the eigenvalue problem. Consequently, 
in order to solve these PDEs any numerical method, such as the finite element method 
we use here, will usually generate large asymmetric matrices (say, greater than 
2000 x 2000). Conventional eigenroutines to calculate the eigenvalues with the largest 
imaginary parts of these big matrices are not available, and the calculation of all the 
eigenvalues is very inefficient. Special methods have to be introduced. 

A common way to avoid directly solving all the eigenvalues of large matrices is by 
projection. Since the early 1 9 5 0 ~ ~  several projection methods have been developed to 
handle the eigenvalue problem of large sparse non-symmetric matrices. These are 
usually iterative methods based upon Krylov subspace techniques. Depending on the 
different deflation and preconditioning procedures used, there are many variations of the 
basic methods. For a good reference, see Saad (1989). The method we used here was 
originally developed by Saad (1980, 1989). It is an iterative Arnoldi algorithm 
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combined with a Schur-Wielandt deflation technique. Its application to hydrodynamic 
stability analysis has been successful (see Christodoulou & Scriven 1988). Saad’s code 
was originally written for real matrices. For our case we slightly modified the code to 
handle the complex matrices generated from the finite element method. The resulting 
code is quite general for applications in hydrodynamic stability analysis, especially 
when the flow region is infinite in one or two dimensions. Before discussing numerical 
methods, we introduce the basic eccentric steady flow in a pipe. 

2. The steady flow solutions 
Consider a straight circular pipe filled with two immiscible fluids. The flow is driven 

by a constant pressure gradient along the axis of the pipe. The two fluids have different 
viscosities and interfacial tension acts on the interface. To exclude the effect of gravity, 
we assume that they have the same density. 

The equations of motion are 

where I = 1,2 refers to the two fluids. We also require that 

0 = 0 on the pipe wall. 

The equations on the interface r = R(x, y ,  z ,  t )  are 

aR 
at 

zi = -+ 0. V R ,  (3) 

[ f i n  = 0, (4) 

and - + ~ H T )  TZ + 1 [ 2 p ~ ( r i ) ]  . TZ = 0, ( 5 )  
where D ( 0 )  = #70+VGT) and [[.]I = (.),-(.), is the jump across the interface, 2 H  
is the mean curvature of the interface and n is the normal point from the core to the 
annulus. 

We look for steady solutions of this system in which one phase of the fluid forms a 
core (fluid 1) with the lubricating fluid (2) outside. Neither the stratified case nor the 
case when there are several cores are considered here. We seek a two-phase Poiseuille 
flow with the only non-zero velocity component W(x,y)  independent of z.  The 
governing equations for this solution are 

pl v2 w = A  (6)  
(7) 

uwn = 0, (8) 
[pa W p n ]  = 0. (9) 

W = 0 on the wall, 

and the velocity and the shear stress are continuous across the interface: 

The normal stress balance on the interface is 

[PJJ + 2Hv = 0, 

where v is the interfacial tension coefficient. The pressure jump [PI is a constant. This 
implies that H is a constant and hence the interface separating the two phases is a 
cylinder. However, the position and the radius R, of the core have to be prescribed to 
specify the geometry of the flow domain. The position of the core can be simply 
described by the eccentricity of its centre, which is denoted as e, as shown in figure 1. 
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FIGURE 1. The basic solution for the case when m = 0.05, e = 0.2, a = 0.6. 

Equation (6) is a Poisson equation with interface jump conditions. Bentwich (1964) 
solved this problem using bipolar coordinates and the solution was expressed as a type 
of Fourier series. It is convenient for our stability analysis to solve (6) with a simple 
finite element code. The nodal values of W will serve as the basic flow profile in the 
stability analysis. A sample of the mesh and the flow profile are shown in figure 1. 

3. Equations for small disturbances 

(O,O, W, P ,  R,). The linearized equations satisfied by (u, v, w,p ,  8) are 
We now introduce small disturbances (u, u, w,p,  8) of the basic steady solution 

au av  aw -+-+- = 0, 
ax ay aZ 

S is the disturbance of the radius R, and is a function of x, y ,  z and t. Let n be the 
outward normal of this disturbed interface: 

V R ( x ,  Y, z ,  0 
lVR(x, Y, z,  01. 

n =  

n can be linearized as 
n = n , i + n , j + k + 0 ( 8 ) ,  

where n, and ny are the zeroth-order components of n in the x- and y-directions, 
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respectively, and they are independent of 6. We also introduce a unit tangent vector z 
of the interface, pointing counterclockwise in the (x, y)-plane of the cross-section. Then 
we can write out the interface jump conditions satisfied by (u, v, w,p, 8) as follows: 

as as 
at az 
--n,u-n,v+ W- = 0, 

To make the above equations dimensionless we scale lengths with the radius of the 

(24) 
pipe R ,  velocity with 

which is the centreline velocity in the concentric case. For comparison we use Wo as our 
velocity scale even in the eccentric case. Time is scaled with R/Wo and pressure with 
p Po. The following dimensionless parameters appear in the dimensionless equations : 

Reynolds number: Re, = p Wo R/p, ,  
viscosity ratio: m = p2/p1, 

dimensionless core radius: a = RJR,  
interfacial tension number: J* = p(~R/p ; .  

To keep the nomenclature short, we use the same symbols for the dimensionless and 
dimensional variables. Consider (u, v, w, p, 8) to be dimensionless now. After intro- 
ducing the normal mode 

W, = f [ R K p 2  -P,> + R 2 ~ , l / 4 ~ , ~ 2 ,  

into the linearized equations, we find that 

au  av  -+--aw = 0, 
ax ay 

aP 1 ia(W-c)u = - - + - ( V 2 - ~ 2 ) u ,  
ax Re, 

aP 1 
aY Re, 

ia(W-c)v = - - - + - ( V 2 - ~ 2 ) v ,  

aw aw 1 

ax ay Re, 
-a( W-  c) w + u-+ v- = - iap +-(V2 -a2) w, 
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where a: is the wavenumber, c is the eigenvalue and the Laplacian is two-dimensional. 
The imaginary pat of c will determine the stability of the basic state. On the boundary, 
u, u,  w are zero. The interface conditions are 

a(W-c)S+n,u+n,z) = 0, (29) 

where m, = 1,m2 = m. Equations (18), (19) and (20) remain the same. 
We note that the partial derivatives with respect to 7 in the interface equations and 

the derivatives of Win the field equations are associated with the eccentric position of 
the core and vanish in concentric flow. This makes it impossible to fully separate the 
variables and reduce the governing equations to ODES. One could imagine that there 
might be some way to further simplify the equations by using bipolar coordinates but 
we prefer to solve this system of equations numerically, since there are many related 
stability problems which can only be solved numerically. This relatively simple 
problem might as well serve as a test ground for the numerical algorithms needed for 
the study of eigenvalue problems for PDEs. 

4. Numerical methods 
The system governing the disturbances (u ,  z), w,p, 8) is an eigenvalue problem. Using 

the same mesh as for the calculation of the basic flow, we discretize this system by the 
finite element approximation. Special attention is paid to the interfacial equations since 
they cannot always be incorporated into the main equations in the weak form of the 
system (see Hu & Joseph 1989). Also, equations such as (32) are ordinary differential 
equations for S, which is only defined on the basic interface. We have to treat them as 
extra constraints with the normal derivatives of (u,  z), w) on the interface as extra 
unknowns. This makes the mass matrices from the finite element approximation 
asymmetric, which in turn greatly increases the difficulty for the eigenvalue solver. 

The resulting matrix equation is a generalized eigenvalue problem of the form 

Mq = cBq, (33) 
where M is non-singular. B is usually a singular matrix because some of the equations 
do not contain the time derivatives. The number of nodes needed to resolve the basic 
steady flow and the disturbances proves to be such that the dimension N of M and B 
is at least 2000 and possibly more, depending on the values of the parameters such as 
viscosity ratio, Reynolds number and so on. Thus the matrices are large, but they are 
banded because of the so-called near orthogonality of the basic shape functions. A 
great effort was made in labelling the nodes of the mesh in order to reduce the 
bandwidth of M and B. 

Because only the eigenvalues with the largest imaginary part determine the stability 
of the basic flow it would be very inefficient to apply the general library routines, which 
compute all the eigenvalues, to the above system. The common way of avoiding this 
inefficiency is to use subspace projection methods. As Saad (1989) pointed out, there 
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have been three basic approaches to the projection methods. The one we shall use is 
the so-called Arnoldi's method. The idea behind all the projection methods is to 
approximate an eigenvector u by a vector x of a subspace K by orthogonal Galerkin 
projection, so that the residual vector of x is orthogonal to another subspace, which 
may be the same K. More precisely, for an eigenvalue system 

AU = hu, (34) 
where A is an n x n complex matrix, we look for an approximate eigenpair 01, x) in 
C x K. K is an k-dimensional subspace of C", provided that 

u C . ( A - p ) x = 0 ,  V D E K .  (35) 

K = span(vl,Avl,A2vl,. . . Vl), (36) 

Arnoldi's method uses the Krylov subspace as K, which is defined as 

where v,  belongs to C" and has unitary Euclidean norm. Let v1,v2,  ... , v k  be k 
orthogonal vectors of K, and Vk be the matrix composed with vi as its columns. Then 
we can write 

Thus (35) is equivalent to 
x = v,y, y d k .  (37) 

Vf(A - p ) x  = 0,  (38) 

or (VfAV,-p)y = 0. (39) 
Note that Vf AV, in (39) is a k x k matrix, which is to be solved routinely. Its 
eigenvalues provide the approximations to the eigenvalues of A and the eigenvectors 
are related by (37). 

The generalized problem (33) can be transformed to a system 

(M- CTB)-' Mq = &, (40) 
whose eigenvalue 5 is related to h by formula 

where CT, a complex number, is called a shift. Saad (1980, 1989) proved that @,x) is 
a good approximation to the original eigenpair for the outermost part of the spectrum 
of the system. From (41) this property is used in choosing the shift CT, i.e. the number 
closest to the desired eigenvalue is picked as the shift. Of course, the eigenvalue is not 
known beforehand ; hence, in practice, a so-called shift- and invert strategy is adopted, 
which is essentially an iterative way to better approximate the eigenvalues. Adding this 
shift-and-invert process to the original algorithm will usually better separate the 
spectrum of the problem and accelerate the convergence. 

5. Comparison with the concentric case 
By combining Arnoldi's method with the shift-and-invert strategy and other 

transformation techniques, computer codes have been developed (Saad 1989). Their 
first application to the hydrodynamic stability problem was done by Christodoulou & 
Scriven (1988). We adapted Saad's code to complex matrices for use in our problem. We 
shall first compare the results with existing results. 

Concentric core flow (also called perfect core-annular flow) is a special case of our 
general setup, in which the eccentricity is zero and axisymmetry allows the equations 
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(10000, 1, 1, (37.78, 10, 0.5, (500, 5, 0.05, 
(Re,, a, m, J * ,  a) = 0, 0.5) 0,0.7) 1000, 0.9) 
Salwen & Grosch 0.9717-0.028 3% - - 

Arnoldi’s method 0.9694-0.02867i 0.6685 +0.0043321 0.4058+0.025 1 l i  

0,9699-0.02864i 0.6689+0.004 149i 0.3837 +O.O2087i 
(2736 x 2736) (2535 x 2535) (2498 x 2498) 

Hu & Joseph - 0.6693 + 0.004 131i 0.3854+0.02087i 

(2401 x 2401) (2087 x 2087) (2002 x 2002) 

TABLE 1. Comparison of computer values of the most unstable eigenvalue for one-fluid Poiseuille 
flow and two-fluid core-annular flow with those obtained by Arnoldi’s method 

to be further reduced to ODES by introducing the azimuthal modes proportion to 
exp (in@. The resulting equations were solved by different numerical schemes and the 
results have been summarized in Joseph & Renardy (1992). An even more special case 
is the one-fluid pipe flow problem, which can be obtained from the two-fluid model 
when the viscosity of the fluids is the same and the interfacial tension is zero. As is well- 
known, Poiseuille pipe flow is stable in the linear case, for which Salwen & Grosch 
(1972) have given some complete results for the leading eigenvalues. Table 1 is a 
comparison of the leading eigenvalues they computed for these special cases with those 
from our PDE code. 

In table 1, the numbers in the brackets under each entry are the matrix size in our 
general program. The first row is for the case of pipe Poiseuille flow with results for 
Salwen & Grosch (1972); the second and third rows are for perfect core-annular flow; 
the results are taken from Hu & Joseph (1989). In our calculation for these test cases 
the dimension of Krylov subspace k is usually taken to be around 20, and in many 
instances only one pass of the iterative Arnoldi method is needed; for 2000x2000 
matrices this takes about 10 s on the 8-CPU Cray YMP at the Minnesota 
Supercomputer Center. Since the shift strategy involves the inversion of the mass 
matrix, a fair amount of time spent on the LU decomposition in Arnoldi’s method. 

6. Results 
Preziosi et al. (1989) and Hu & Joseph (1989) have shown that there are basically 

three types of instability of the perfect core-annular flow. One is the so-called capillary 
instability due to the interfacial tension, which stabilizes short-wave disturbances and 
destabilizes long-wave disturbances. This instability occurs at low Reynolds numbers. 
The second instability is associated with the viscosity difference between the two fluids 
and is due to interfacial friction. The third is the usual Reynolds stress instability for 
single-phase flow. The interfacial friction and the Reynolds stress instabilities occur at 
higher Reynolds number. Hence, there are two branches of the neutral curve : an upper 
and lower branch (see figure 8 of Preziosi et al. 1989). In general these two branches 
overlap so that there is no stability for most of the parameters. However, there is a 
small window of parameters in which the upper and lower branches of the neutral 
curve do not intersect and the perfect core-annular arrangement can be stable. We 
introduced some small eccentricity of the core for a case corresponding to figure 3 of 
Hu & Joseph (1989) and computed the neutral curves. Figure 2 shows the result when 
J* = 1000, m = 0.1, and a = 0.8. The eccentricity is 0.02 and 0.05. It is clear that the 
neutral curves for slightly eccentric configurations are topologically identical to the 
ones for the concentric arrangement, although the upper branch becomes broader in 
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FIGURE 2. Neutral curves when J *  = 1000, m = 0.1, a = 0.8 and e = 0, 0.02, 0.05. 
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FIGURE 3. Long-wave modes for J *  = 1000, m = 0.1, a = 0.8 and e = 0.02, 0.05, 0.08, 
ci is the maximum imaginary part of the eigenvalues. 

the eccentric cases. Because of the nature of Arnoldi’s method, one cannot obtain the 
whole spectrum of the problem at once. In our calculations, we always tried to scan the 
spectrum to make sure that no unstable eigenvalues were missed. No new modes of 
instability appear to arise for eccentric flow. Hence, eccentric flows can be stable in a 
window of parameters in which concentric flow is stable. Although the size of the stable 
window depends upon the eccentricity, under the right conditions a number of 
eccentric core flow configurations can be stable. Since each of these stable flows can be 
viewed as a disturbance of a neighbouring stable flow, they must all be neutrally stable. 
To make this clear, we recall that analysis of long-wave disturbances for the perfect 
core-annular flow (see Preziosi et al. 1989, for instance) shows that infinitely long 
waves with zero wavenumbers are neutrally stable. For the eccentric cases we also 
calculated the eigenvalue with the maximum imaginary part as the wavenumber goes 
to zero. The results are shown in figure 3 ,  when J* = 1000, m = 0.1, a = 0.8 and 
Re, = 100. It is apparent that the imaginary part of the eigenvalue approaches zero when 
wavenumber of the disturbances goes to zero in both concentric and eccentric flows. 
A zero wavenumber corresponds to an infinite wavelength so that the neutrally 
disturbed flow is just another stable eccentric flow. 
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When coreannular flow arrangements are unstable the maximum growth rate 3 is 
of great importance. 3 is defined as 

3 = dCi(d), (42) 

where d is the wavenumber of the most dangerous mode; the imaginary part ci is 
maximum at d. In practice, 3 is often used to predict the wavelength of the perturbed 
flow motion. In the case of core-annular flow, the agreement with experimental results 
is found surprisingly good. For the eccentric cases, we computed the maximum growth 
as a function of the eccentricity for some typical values of Reynolds number at which 
the flow is unstable. The results are shown in figure 4. Figure 4(a) shows d as the 
eccentricity increases from zero to 0.18 when J* = 5000, m = 0.02, a = 0.7 and 
Re, = 50, 200. Figure 4(b) displays the corresponding growth rate. At Re, = 50, the 
instability is probably caused by the capillary instability, while Re, = 200 is in the 
region where other causes of instability dominate. These results show that eccentric 
cases are not qualitatively different from the concentric case. The growth rate and the 
wavenumber of the most dangerous mode change rather smoothly as the core is moved 
gradually off-centre. 
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FIGURE 5. The evolution of the interfacial wave with eccentricity: (a) 8 = 0 ;  (b) e = 0.05; 
(c)  e = 0.10; ( d )  e = 0.15; (e)  e = 0.20; J* = 1000, a = 0.7, rn = 0.05 and Re, = 100. 

The most unstable eigenmodes for eccentric flow are, of course, not axisymmetric. 
In figure 5,  we plot the interfacial waves associated with the most unstable eigenfunction 
for J* = 1000, a = 0.7, rn = 0.05, Re, = 100 and different values of eccentricity. 
Because the eigenfunctions are determined only to within an arbitrary constant, the 
amplitude of the eigenfunction is arbitrary in the graph. Figure 5(a)  is for the 
concentric case; the interfacial wave is varicose. As the core is gradually placed off- 
centre, the interfacial wave evolves to the sinuous form shown in figure 5(e). Apart 
from the eccentricity, this wave form is like that associated with the asymmetric 
n = 1 mode in the concentric case, however, it is known that in the concentric case the 
most unstable mode is usually associated with n = 0, i.e. the axisymmetric mode (see 
Preziosi et al. 1989, for instance). Hence the so-called corkscrew waves observed in 
experiments (see Bai, Chen & Joseph 1992) are not well understood in the light of the 
stability analysis results for perfect core-annular flow. 

We know that a real corkscrew wave is a spiral wave and does not possess mirror 
symmetry. But we can imagine the torques associated with nonlinear fluid motions 
would rotate the eccentric wave into a real corkscrew wave. The corkscrew mode in the 
finitely eccentric case may inherit properties of the eigenfunction belonging to the first 
mode of azimuthal periodicity in the concentric case. The difference between the 
growth rates of the varicose ( n  = 0) and sinuous modes (n = 1) is rather small and the 
ordering of the eigenvalues is sensitive to changes in the parameters. The most unstable 
mode in the finitely eccentric case can be regarded as a combination of modes which 
perturb with e the eigenfunction of the stability problem for concentric flow (e = 0). In 
this combination, the mode which reduces to the one with n = 0 when e = 0 dominates 
when e is small and, evidently, the mode which reduces to the one with n = 1 when 
e = 0 dominates for larger values of e. Thus eccentricity might just be the reason for the 
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appearance of the corkscrew waves in a two-phase pipeline. Finally, we note that 
because of the asymmetry of eccentric configuration, the corkscrew-like unstable mode 
is typical rather than exceptional. 

7. Conclusion 
We have extended the linear stability analysis of perfect core-annular two-phase 

pipe flow to cases when the core is off-centre. A standard linear stability analysis led 
us to a group of PDEs, which we solved numerically using the finite element method. 
To solve the resulting large asymmetric sparse eigenvalue problem we modified Saad’s 
version of the Arnoldi projection method for applications to complex matrices. We 
may summarize our results as follows: 

(i) Eccentricity perturbs the stability of core-annular flows continuously ; there 
seems to be no special unstable mode due to the eccentricity of the core. 

(ii) Eccentric core-annular flows can all be stable in the same open regions of 
parameters where concentric flow is stable. 

(iii) Neutrally stable zero-wavenumber disturbances can be found for each eccentric 
core-annular flow. The addition of such a perfect flow and the aforementioned neutral 
eigenfunctions lead to a neighbouring eccentric core-annular flow. 

(iv) Unstable waves superposed on eccentric flows could lead to corkscrew waves. 
(v) The maximum growth rate and the associated wavenumber change continuously 

with eccentricity. This implies that the qualitative picture of stability and instability 
which has evolved from numerous studies of the concentric case carries over to the 
eccentric cases. 

(vi) Linear stability theory does not select a stable centre for perfect core-annular 
flow in the density matched case. This suggests that configurations observed in practice 
are selected by nonlinear mechanisms. The prediction of the placement of perfect and 
wavy core flow with different and matched densities is not yet possible. 

We find that our eigenvalue solver is a quite reliable tool. In most of our cases the 
dimension of the Krylov space is taken to be less than 20 and usually one pass of the 
Arnoldi algorithm is needed to get good convergence. Needless to say, this method is 
much more efficient than the routine eigenvalue solvers. However, the efficiency of this 
method depends directly on the bandwidths of the matrices, which is not a problem for 
finite difference routines. But for the finite element method, care has to be taken in 
numbering the nodes of the mesh in order to reduce the bandwidth. 

This work was supported by grants from Department of Energy, National Science 
Foundation and the Minnesota Supercomputer Institute. We thank Dr Y .  Saad of 
Department of Computer Science, University of Minnesota, for providing us with his 
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